1/4x^2-5=5

Simple and best practice solution for 1/4x^2-5=5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/4x^2-5=5 equation:



1/4x^2-5=5
We move all terms to the left:
1/4x^2-5-(5)=0
Domain of the equation: 4x^2!=0
x^2!=0/4
x^2!=√0
x!=0
x∈R
We add all the numbers together, and all the variables
1/4x^2-10=0
We multiply all the terms by the denominator
-10*4x^2+1=0
Wy multiply elements
-40x^2+1=0
a = -40; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-40)·1
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{10}}{2*-40}=\frac{0-4\sqrt{10}}{-80} =-\frac{4\sqrt{10}}{-80} =-\frac{\sqrt{10}}{-20} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{10}}{2*-40}=\frac{0+4\sqrt{10}}{-80} =\frac{4\sqrt{10}}{-80} =\frac{\sqrt{10}}{-20} $

See similar equations:

| 2x+3x=172 | | n/16=-18 | | 13=5k-12 | | 3+5x=-6-x | | ƒ(2.5)=2x2−3x+7 | | 21/7x=6/7 | | ƒ(x)=2x2−3x+7 | | (3x-5)^2=0 | | 3n+2(2n+4)=8n | | 2/3(x+12)+2/3x=4 | | -18m=-17m+16 | | 6/x=27/9 | | 1/8=x+7/8 | | w+3=4w–6 | | 3(-3x+2)+3=45 | | -12-3x=-x-2x-12 | | 25=25-4.5*x | | 285=152-w | | -9v+11=5-v-10 | | z÷3–5z+4(z–2)z=12 | | 3n+6=5n-26 | | 50/x=10/2 | | 64-(3x-4)=4x | | 3x/5-2/3=0 | | 10(1=3b)=-20 | | 9v+6=-3 | | 204-v=260 | | 3x-43=2x+9 | | b/8=1/3=11 | | X+3+7x-10=9x-11 | | (12-n)+(n-5)=9.96 | | 60x+.30=30x+.40 |

Equations solver categories